Latest Science

  1. Interactions Between Gut Microbiota and Acute Childhood Leukemia.
    Yuxi Wen et al. Front Microbiol. 2019:10: 1300.2019 Jun 19. doi: 10.3389/fmicb.2019.01300
  2. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism.
    Maini Rekdal V et al. Science. 2019 Jun 14:364(6445). pii: eaau6323. doi: 10.1126/science.aau6323.
  3. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease.
    Li F et al. Front Cell Infect Microbiol. 2019 Jun 12:9:206. doi: 10.3389/fcimb.2019.00206.
  4. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease
    FengXia Li et al. Front Cell Infect Microbiol. 2019 June 12. 9: 206. doi: 10.3389/fcimb.2019.00206
  5. Host-microbe interactions in the pathogenesis and clinical course of sarcoidosis.
    Pleiades T. Inaoka et al. J Biomed Sci. 2019 June 11. 26: 45.doi: 10.1186/s12929-019-0537-6
  6. Gastrointestinal Complications in Chronic Granulomatous Disease.
    Falcone EL et al. Methods Mol Biol. 2019 June 7:1982:573-586. doi: 10.1007/978-1-4939-9424-3_34
  7. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer.
    Yachida S et al. Nat Med. 2019 Jun 6. doi: 10.1038/s41591-019-0458-7.
  8. Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbe-host co-evolution.
    Duranti S et al. Environ Microbiol. 2019 Jun 6. doi: 10.1111/1462-2920.14705.
  9. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability.
    Kompella P et al. Mol Carcinog. 2019 Jun 5. doi: 10.1002/mc.23048.
  10. Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota.
    Yuying Fan et al. Mediators Inflamm. 2019 June 3.2019: 8373060. doi: 10.1155/2019/8373060
  11. Microbiota and non-alcoholic fatty liver disease / non-alcoholic steatohepatitis (NAFLD/NASH).
    Duarte SMB et al. Ann Hepatol. 2019 May – Jun:18(3):416-421. doi: 10.1016/j.aohep.2019.04.006.
  12. Influence of maternal microbiota during pregnancy on infant immunity.
    Nyangahu DD et al. Clin Exp Immunol. 2019 May 23. doi: 10.1111/cei.13331.
  13. Escherichia coli K12: An evolving opportunistic commensal gut microbe distorts barrier integrity in human intestinal cells.
    Bhat MI et al. Microb Pathog. 2019 May 18:133:103545. doi: 10.1016/j.micpath .2019.103545.
  14. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases
    Annalisa Noce et al. Nutrients. 2019 May 14:11(5): 1073. doi: 10.3390/nu11051073
  15. Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences.
    Mokkala K et al. Clin Nutr. 2019 May 13. pii: S0261-5614(19)30214-6. doi: 10.1016/j.clnu.2019.05.003.
  16. Toll like receptors (TLRs) in response to human gut microbiota of Indian obese and lean individuals.
    Bahadur T et al. J Family Med Prim Care. 2019 May:8(5):1567-1570. doi: 10.4103/jfmpc.jfmpc_136_19.
  17. Gastrointestinal alterations in anorexia nervosa - A systematic review.
    Schalla MA et al. Eur Eat Disord Rev. 2019 May 7. doi: 10.1002/erv.2679
  18. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study.
    Jang LG et al. J Int Soc Sports Nutr. 2019 May 3:16(1):21. doi: 10.1186/s12970-019-0290-y.
  19. Gut microbiota and probiotic intervention as a promising therapeutic for pregnant women with cardiometabolic disorders: present and future directions.
    de Brito Alves JL et al. Pharmacol Res. 2019 May 2:104252. doi: 10.1016/j.phrs.2019.104252.
  20. Relationship between intestinal microorganisms and T lymphocytes in colorectal cancer.
    Shuwen H et al. Future Oncol. 2019 May 2. doi: 10.2217/fon-2018-0595.
  21. Parkinson's disease and the gastrointestinal microbiome.
    Lubomski M et al. J Neurol. 2019 Apr 30. doi: 10.1007/s00415-019-09320-1
  22. Gut microbiota and bipolar disorder: a review of mechanisms and potential targets for adjunctive therapy.
    Gondalia S et al. Psychopharmacology (Berl). 2019 Apr 30. doi: 10.1007/s00213-019-05248-6.
  23. The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder.
    Srikantha P and Mohajeri MH Int J Mol Sci. 2019 Apr 29:20(9). pii: E2115. doi: 10.3390/ijms20092115.
  24. Altered diversity and composition of the gut microbiome in patients with cervical cancer
    Zhongqiu Wang et al. AMB Express. 2019 March 29:9: 40. doi: 10.1186/s13568-019-0763-z.
  25. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease.
    Denise Mafra et al. Nutrients. 2019 Mar:11(3): 496. doi: 10.3390/nu11030496
  26. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies.
    Ting-Ting Huang et al. Front Genet. 2019 Feb 19:10: 98. doi: 10.3389/fgene.2019.00098
  27. Gut Microbiota and Chronic Constipation: A Review and Update.
    Ohkusa T et al. Front Med (Lausanne). 2019 Feb 12:6:19. doi: 10.3389/fmed.2019.00019. e Collection 2019.
  28. Intestinal Microbiota in Early Life and Its Implications on Childhood Health.
    Lu Zhuang et al. Genomics Proteomics Bioinformatics. 2019 Feb:17(1): 13–25.doi: 10.1016/j.gpb.2018.10.002
  29. Correlation of Gut Microbiome Between ASD Children and Mothers and Potential Biomarkers for Risk Assessment.
    Ning Li et al. Genomics Proteomics Bioinformatics. 2019 Feb: 17(1): 26–38.doi: 10.1016/j.gpb.2019.01.002
  30. Microbiome as a therapeutic target in alcohol-related liver disease.
    Sarin SK et al. J Hepatol. 2019 Feb:70(2):260-272. doi: 10.1016/j.jhep.2018.10.019.
  31. Effects of Proton Pump Inhibitors on the Gastrointestinal Microbiota in Gastroesophageal Reflux Disease
    Yi-Chao Shi et al. Genomics Proteomics Bioinformatics. 2019 Feb:17(1): 52–63.
  32. Necrotizing Enterocolitis and the Preterm Infant Microbiome.
    Baranowski JR et al. Adv Exp Med Biol. 2019 Jan 26. doi: 10.1007/5584_2018_313
  33. Shaping Microbiota During the First 1000 Days of Life.
    Selma-Royo M et al. Adv Exp Med Biol. 2019 Jan 26. doi: 10.1007/5584_2018_312.
  34. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature.
    Milosevic I et al. Int J Mol Sci. 2019 Jan 17:20(2). pii: E395. doi: 10.3390/ijms20020395
  35. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities.
    Srinivasan K et al. Crit Rev Food Sci Nutr. 2019 Jan 13:1-16. doi: 10.1080/10408398.2018.1546670.
  36. What is the healthy gut microbiota composition? Changing Ecosystem across age, environment, diet and diseases.
    Rinninella E et al. Microorganisms. 2019 Jan 10:7(1). pii: E14. doi: 10.3390/microorganisms7010014.
  37. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids.
    Felizardo RJF et al. Pharmacol Res. 2019 Jan 10:141:366-377.
  38. The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care.
    Jannie G. E. Henderickx et al. Front Cell Infect Microbiol. 2019:9: 85. doi: 10.3389/fcimb.2019.00085

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.
  1. Gut microbiota and obesity: An opportunity to alter obesity through Fecal Microbiota Transplant (FMT).
    Lee P et al. Diabetes Obes Metab. 2018 Oct 17. doi: 10.1111/dom.13561.
  2. Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus.
    Su M et al. PLoS One. 2018 Oct 17;13(10):e0205695. doi: 10.1371/journal.pone.0205695.
  3. Role of Gut Microbiota in the Development and Treatment of Colorectal Cancer.
    Lin C et al. Digestion. 2018 Oct 17:1-7. doi: 10.1159/000494052.
  4. The Safety of Fecal Microbiota Transplantation for Crohn's Disease: Findings from A Long-Term Study.
    Wang H et al. Adv Ther. 2018 Oct 16. doi: 10.1007/s12325-018-0800-3.
  5. Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus.
    Arnold JW et al. Nutrients. 2018 Oct 16;10(10). pii: E1517. doi: 10.3390/nu10101517.
  6. Successful Helicobacter pylori eradication therapy improves symptoms of chronic constipation.
    Murata M et al. Helicobacter. 2018 Oct 15:e12543. doi: 10.1111/hel.12543.
  7. Gut dysbiosis and paediatric crohn's disease.
    Brusaferro A et al. J Infect. 2018 Oct 15. pii: S0163-4453(18)30308-6. doi: 10.1016/j.jinf.2018.10.005
  8. Focus on the gut-brain axis: Multiple sclerosis, the intestinal barrier and the microbiome.
    Camara-Lemarroy CR et al. World J Gastroenterol. 2018 Oct 7;24(37):4217-4223. doi: 10.3748/wjg.v24.i37.4217.
  9. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier?
    Dicks LMT et al. Front Microbiol. 2018 Sep 28;9:2297. doi: 10.3389/fmicb.2018.02297.
  10. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial.
    Shimizu K et al. Crit Care. 2018 Sep 27;22(1):239. doi: 10.1186/s13054-018-2167-x.
  11. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant.
    Taur Y et al. Sci Transl Med. 2018 Sep 26;10(460). pii: eaap9489. doi: 10.1126/scitranslmed.aap9489.
  12. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate.
    Luu M et al. Sci Rep. 2018 Sep 26;8(1):14430. doi: 10.1038/s41598-018-32860-x.
  13. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease.
    Zuo T et al. Front Microbiol. 2018 Sep 25;9:2247. doi: 10.3389/fmicb.2018.02247.
  14. Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier.
    Birchenough G et al. Gut Microbes. 2018 Sep 25:1-5.
  15. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders.
    Hughes HK et al. Curr Neurol Neurosci Rep. 2018 Sep 24;18(11):81. doi: 10.1007/s11910-018-0887-6.
  16. Lifestyle Factors Affecting the Gut Microbiota's Relationship with Type 1 Diabetes.
    Gülden E et al. Curr Diab Rep. 2018 Sep 24;18(11):111. doi: 10.1007/s11892-018-1098-x.
  17. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements.
    Pärnänen K et al. Nat Commun. 2018 Sep 24;9(1):3891. doi: 10.1038/s41467-018-06393-w.
  18. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals.
    Lee SC et al. Sci Rep. 2018 Sep 24;8(1):14277. doi: 10.1038/s41598-018-32585-x.
  19. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis.
    He Y et al. Microbiome. 2018 Sep 24;6(1):172. doi: 10.1186/s40168-018-0557-6.
  20. Effects of an oral synbiotic on the gastrointestinal immune system and microbiota in patients with diarrhea-predominant irritable bowel syndrome.
    Moser AM et al. Eur J Nutr. 2018 Sep 24. doi: 10.1007/s00394-018-1826-7.
  21. Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children.
    Sanchis-Chordà J et al. Eur J Nutr. 2018 Sep 24. doi: 10.1007/s00394-018-1828-5.
  22. Gluconeogenic growth of Vibrio cholerae is important for competing with host gut microbiota.
    Wang J et al. J Med Microbiol. 2018 Sep 24. doi: 10.1099/jmm.0.000828.
  23. Allergen Immunization Induces Major Changes in Microbiota Composition and Short-Chain Fatty Acid Production in Different Gut Segments in a Mouse Model of Lupine Food Allergy.
    Andreassen M et al. Int Arch Allergy Immunol. 2018 Sep 21:1-13.
  24. Behavioral response to fiber feedingis cohort-dependent and associated with gut microbiotacomposition in mice.
    Mailing LJ et al. Behav Brain Res. 2018 Sep 19. pii: S0166-4328(18)31068-4.
  25. Reduced colonic mucin degradation in breastfed infants colonized by Bifidobacterium longumsubsp. infantis EVC001.
    Karav S et al. FEBS Open Bio. 2018 Sep 17;8(10):1649-1657.
  26. Alterations in the Urinary Microbiota Are Associated With Cesarean Delivery.
    Liu F et al. Front Microbiol. 2018 Sep 12;9:2193. doi: 10.3389/fmicb.2018.02193.
  27. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota.
    Karl JP et al. Front Microbiol. 2018 Sep 11;9:2013. doi: 10.3389/fmicb.2018.02013.
  28. Emerging Role of Diet and Microbiota Interactions in Neuroinflammation.
    Janakiraman M et al. Front Immunol. 2018 Sep 11;9:2067. doi: 10.3389/fimmu.2018.02067.
  29. Complex Network of NKT Cell Subsets Controls Immune Homeostasis in Liver and Gut.
    Marrero I et al. Front Immunol. 2018 Sep 11;9:2082. doi: 10.3389/fimmu.2018.02082.
  30. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis.
    Haak BW et al. Front Immunol. 2018 Sep 10;9:2042. doi: 10.3389/fimmu.2018.02042.
  31. The gut-brain axis in health neuroscience: implications for functional gastrointestinal disorders and appetite regulation.
    Weltens N et al. Ann N Y Acad Sci. 2018 Sep;1428(1):129-150.
  32. Human gut microbiome: hopes, threats and promises.
    Cani PD et al. Gut. 2018 Sep;67(9):1716-1725. doi: 10.1136/gutjnl-2018-316723.
  33. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice.
    Wang S et al. Sci Rep. 2018 Aug 29;8(1):13037. doi: 10.1038/s41598-018-31353-1.
  34. Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma.
    Mathieu E et al. Front Physiol. 2018 Aug 21;9:1168. doi: 10.3389/fphys.2018.01168.
  35. Multi-omics approach to elucidate the gut microbiota activity: Metaproteomics and metagenomics connection.
    Guirro M et al. Electrophoresis. 2018 Jul;39(13):1692-1701
  36. Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization.
    de la Cuesta-Zuluaga J et al. Sci Rep. 2018 Jul 27;8(1):11356. doi: 10.1038/s41598-018-29687-x.
  37. Microbiome and Allergic Diseases.
    Pascal M et al. Front Immunol. 2018 Jul 17;9:1584. doi: 10.3389/fimmu.2018. 01584.
  38. Gut microbiota: a new way to take your vitamins.
    Gomes-Neto JC et al. Nat Rev Gastroenterol Hepatol. 2018 Jul 10. doi: 10.1038/s41575-018-0044-3.
  39. Microbiome Research Is Becoming the Key to Better Understanding Health and Nutrition.
    Hadrich D et al. Front Genet. 2018 Jun 13;9:212. doi: 10.3389/fgene.2018.00212.
  40. Role of the gut microbiota in nutrition and health.
    Valdes AM et al. BMJ. 2018 Jun 13;361:k2179. doi: 10.1136/bmj.k2179.
  41. Gastrointestinal Neuropathies: New Insights and Emerging Therapies.
    Pesce M et al. Gastroenterol Clin North Am. 2018;47(4):877-894.
  42. Brain-Gut Axis: Clinical Implications.
    Khlevner J et al. Gastroenterol Clin North Am. 2018;47(4):727-739.
  43. The Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease.
    Roychowdhury S et al; Med Sci (Basel) (2018) Jun 5;6(2). pii: E47. doi: 10.3390/medsci6020047.
  44. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies.
    Panebianco C et al; Microbiome (2018) May 22; 6: 92. doi: 10.1186/s40168-018-0483-7
  45. The role of the microbiome for human health: from basic science to clinical applications.
    Mohajeri MH et al; Eur J Nutr (2018) May 10; 57(Suppl 1): 1–14. doi: 10.1007/s00394-018-1703-4
  46. The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus
    Lv Yet al; J Diabetes Res (2018) May 7: 1890978. doi: 10.1155/2018/1890978
  47. Microbiota transplantation: concept, methodology and strategy for its modernization.
    Zhang F et al; Protein Cell. (2018) May; 9(5): 462–473.
  48. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis.
    Klimesova K et al; Front Microbiol (2018) Apr 20; 9: 774. doi: 10.3389/fmicb.2018.00774
  49. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids.
    Martinez-Guryn K et al; Cell Host Microbe (2018) Apr 11;23(4):458-469.e5.
  50. Impacts of microbiome metabolites on immune regulation and autoimmunity.
    Haase S et al; Immunology (2018) Apr 11; doi: 10.1111/imm.12933.
  51. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy.
    Gopalakrishnan V et al; Cancer Cell; 2018 Apr 9;33(4):570-580
  52. Role of the Microbiome in Food Allergy.
    Ho HE et al; Curr Allergy Asthma Rep (2018) Apr 5;18(4):27. doi: 10.1007/s11882-018-0780-z.
  53. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.
    Di Meo F et al; Curr Drug Metab (2018) Apr 3. Doi: 10.2174/1389200219666180404094147.
  54. Microbiota effects on cancer: from risks to therapies.
    Rea D et al; Oncotarget (2018) Apr 3; 9(25): 17915–17927
  55. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis.
    Gregory J et al; Calcif Tissue Int (2018) Apr; 102(4): 433–442.
  56. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives.
    Chu F et al; Mediators Inflamm (2018) Apr 2: 8168717. doi: 10.1155/2018/8168717
  57. Role of microbiota in the autism spectrum disorders.
    Campion D et al; Minerva Gastroenterol Dietol (2018) Mar 30. doi: 10.23736/S1121-421X.18.02493-5
  58. Gut microbiota as a source of novel antimicrobials.
    Garcia-Gutierrez E et al; Gut Microbes (2018) Mar 27:1-57. doi: 10.1080/19490976.2 018. 1455790.
  59. The developing gut microbiota and its consequences for health.
    Butel MJ et al; J Dev Orig Health Dis (2018) Mar 22:1-8. doi: 10.1017/S2040174418000119.
  60. The role of the gut microbiota in the pathology and prevention of liver disease.
    Barrera A et al; J Nutr Biochem (2018) Mar 16; 60:1-8. doi: 10.1016/j.jnutbio.2018.03.006.
  61. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases
    Opazo M C et al; Front Microbiol (2018) 9: 432. doi: 10.3389/fmicb.2018.00432
  62. Of Microbes and Minds: A Narrative Review on the Second Brain Aging
    Calvani R et al. Front Med (Lausanne) (2018) Mar 2; 5: 53. doi: 10.3389/fmed.2018.00053
  63. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies.
    Janeiro B et al; Adv Ther (2018); 35(3): 289–310.
  64. Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective
    Vemuri R et al; Biomed Res Int (2018): 4178607.doi: 10.1155/2018/4178607
  65. Gut Microbiota and the Neuroendocrine System
    Aitak Farzi et al; Neurotherapeutics (2018) Jan; 15(1): 5–22.
  66. Oral-gut connection: one step closer to an integrated view of the gastrointestinal tract?
    Lira-Junior R et al; Mucosal Immunol (2018) Jan 3. doi: 10.1038/mi.2017.116.

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.
  1. Micro-inflammation and digestive bacterial translocation in chronic kidney disease.
    Olivier V et al; Nephrol Ther (2017) Dec 30. pii: S1769-7255(17)30604-1. doi: 10.1016/j.nephro.2017.10.005.
  2. Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?
    Moran-Ramos S et al; Arch Med Res (2017) Dec 29. pii: S0188-4409(17)30232-1. doi: 10.1016/j.arcmed.2017.11.003
  3. Th17 plasticity and its relevance to inflammatory bowel disease.
    Ueno A et al; J Autoimmun (2017) Dec 28. pii: S0896-8411(17)30781-3. doi: 10.1016/j.jaut.2017.12.004.
  4. Human Intestinal Microbiota: Interaction Between Parasites and the Host Immune Response.
    Partida-Rodríguez O et al; Arch Med Res (2017) Dec 28. pii: S0188-4409(17)30248-5. doi: 10.1016/j.arcmed.2017.11.015
  5. Gut microbiota in the pathogenesis of inflammatory bowel disease.
    Nishida A et al; Clin J Gastroenterol. 2017 Dec 29; doi: 10.1007/s12328-017-0813-5
  6. Microbiota, a key player in alcoholic liver disease.
    Cassard AM et al; Clin Mol Hepatol (2017) Dec 22; doi: 10.3350/cmh.2017.0067.
  7. Targeting gut microbiome: A novel and potential therapy for autism.
    Yang Y et al; Life Sci (2017) Dec 22; pii: S0024-3205(17)30665-3. doi: 10.1016/j.lfs.2017.12.027.
  8. Gut microbiota: What impact on colorectal carcinogenesis and treatment?
    Bruneau A et al; Bull Cancer (2017) Dec 4; pii: S0007-4551(17)30328-4. doi: 10.1016/j.bulcan.2017.10.025.
  9. Gut microbiome production of short-chain fatty acids and obesity in children.
    Murugesan S et al; Eur J Clin Microbiol Infect Dis (2017) Dec 2; doi: 10.1007/s10096-017-3143-0.
  10. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.
    Reichardt N et al; ISME J (2017) Dec 1; doi: 10.1038/ismej.2017.196
  11. Development of the Microbiota in Infants and its Role in Maturation of the Gut Mucosa and Immune System
    Ximenez C et al; Arch Med Res (2017) Nov 30; pii: S0188-4409(17)30236-9. doi: 10.1016/j.arcmed.2017.11.007
  12. A review of metabolic potential of human gut microbiome in human nutrition.
    Yadav M et al; Arch Microbiol. 2017 Nov 29; doi: 10.1007/s00203-017-1459-x.
  13. Interplay between the lung microbiome and lung cancer.
    Mao Q et al; Cancer Lett (2017) Nov 29; pii: S0304-3835(17)30760-7. doi: 10.1016/j.canlet.2017.11.036.
  14. Interindividual variability in gut microbiota and host response to dietary interventions.
    Healey GR et al; Nutr Rev (2017) Nov 28; doi: 10.1093/nutrit/nux062
  15. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis.
    Calvo-Barreiro L et al; Autoimmun Rev (2017) Nov 27; pii: S1568-9972(17)30292-6. doi: 10.1016/j.autrev.2017.11.019
  16. Protection of the human gut microbiome from antibiotics.
    de Gunzburg J et al; J Infect Dis (2017) Nov 23; doi: 10.1093/infdis/jix604
  17. Correlation between intestinal flora and serum inflammatory factors in patients with Crohn's disease.
    Zhang J et al; Eur Rev Med Pharmacol Sci (2017) Nov;21(21):4913-4917
  18. Gut Microbiota in Health and Disease.
    Yamashiro Y et al; Ann Nutr Metab (2017) Nov 14;71(3-4):242-246. doi: 10.1159/000481627
  19. Gastric microbiota: An emerging player in Helicobacter pylori-induced gastric malignancies.
    Espinoza JL et al; Cancer Lett (2017) Nov 11; pii: S0304-3835(17)30703-6. doi: 10.1016/j.canlet.2017.11.009
  20. Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson's Disease.
    Perez-Pardo P et al; Curr Behav Neurosci Rep (2017) Nov 8; 4(4):361-368. doi: 10.1007/s40473-017-0129-2
  21. Correlation between intestinal flora and serum inflammatory factors in patients with Crohn's disease.
    Zhang J et al; Eur Rev Med Pharmacol Sci (2017) Nov;21(21):4913-4917
  22. Fecal Microbiota Therapy with a Focus on Clostridium difficile Infection.
    Brandt LJ et al; Psychosom Med (2017) Oct;79(8):868-873. doi: 10.1097/PSY.000000000000051
  23. The microbiome as a novel paradigm in studying stress and mental health.
    Liu RT et al; Am Psychol (2017) Oct;72(7):655-667. doi: 10.1037/amp0000058
  24. Adipose Tissue Metabolism and Cancer Progression: Novel Insights from Gut Microbiota?
    Jordan BF et al; Curr Pathobiol Rep (2017) Oct 24;5(4):315-322. doi: 10.1007/s40139-017-0154-6
  25. Functional Bowel Disorders Are Associated with a Central Immune Activation.
    Farup PG et al; Gastroenterol Res Pract (2017) Oct 23;1642912. doi: 10.1155/2017/1642912 6
  26. Functional Classification of the Gut Microbiota: The Key to Cracking the Microbiota Composition Code: Functional classifications of the gut microbiota reveal previously hidden contributions of indigenous gut bacteria to human health and disease.
    Rosen CE et al; Bioessays (2017) Oct 4; doi: 10.1002/bies.201700032
  27. The Gut Microbiota of Healthy Aged Chinese Is Similar to That of the Healthy Young.
    Bian G et al; mSphere (2017) Sep 27;2(5). pii: e00327-17. doi: 10.1128/mSphere.00327-17. e Collection 2017 Sep-Oct
  28. Gut Microbiota, Immune System, and Bone.
    D'Amelio P et al; Calcif Tissue Int (2017) Sep 30; doi: 10.1007/s00223-017-0331-y
  29. Molecular basis of gut microbiome-associated colorectal cancer: A synthetic perspective.
    Healy AR et al; J Am Chem Soc (2017) Sep 26; doi: 10.1021/jacs.7b07807
  30. Obesity increases the risk of small intestinal bacterial overgrowth (SIBO).
    Roland BC et al; Neurogastroenterol Motil (2017) Sep 2; doi: 10.1111/nmo.13199
  31. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life.
    Takiishi T et al; Tissue Barriers (2017) Sep 6; e1373208. doi: 10.1080/21688370.2017.1373208
  32. The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: a Prospective, Pilot Study.
    Golombos DM; Urology (2017) Sep 6; pii: S0090-4295(17)30957-3. doi: 10.1016/j.urology.2017.08.039.
  33. Effects of obesity on depression: a role for inflammation and the gut microbiota.
    Schachter J et al; Brain Behav Immun (2017) Sep 6; pii: S0889-1591(17)30415-4. doi: 10.1016/j.bbi.2017.08.026
  34. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis.
    Baas H G et al; J Immunol Res (2017) Aug 30; 4835189. doi: 10.1155/2017/4835189
  35. Anticancer effects of the microbiome and its products.
    Zitvogel L et al; Nat Rev Microbiol (2017) Aug;15(8):465-478. doi: 10.1038/nrmicro.2017.44
  36. Microbiota in digestive cancers: our new partner?
    Lopez A et al; Carcinogenesis (2017) Aug 17; doi: 10.1093/carcin/bgx087
  37. Association between gut microbiota and bone health: potential mechanisms and prospective.
    Chen YC et al; J Clin Endocrinol Metab (2017) Jul 26; doi: 10.1210/jc.2017-00513.
  38. Human Gut Microbiota: Toward an Ecology of Disease.
    Hnatiw S et al; Front Microbiol (2017) Jul 17; 8:1265. doi: 10.3389/fmicb.2017.01265. eCollection 2017.
  39. The Mucosal Antibacterial Response Profile and Fecal Microbiota Composition Are Linked to the Disease Course in Patients with Newly Diagnosed Ulcerative Colitis.
    Magnusson MK et al; Inflamm Bowel Dis (2017) June;23 (6),956-96632.
  40. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities.
    Brunkwall L et al; Diabetologia (2017) Jun;60(6):943-951. doi: 10.1007/s00125-017-4278-3. Epub 2017 Apr 22
  41. Reduction in fecal microbiota diversity and short-chain fatty acid producers in Methicillin-resistant Staphylococcus aureus infected individuals as revealed by PacBio single molecule, real-time sequencing technology.
    J Zhao et al; Eur J Clin Microbiol Infect Dis (2017) Apr 28; 36 (8), 1463-1472
  42. Gut Microbiota Species Can Provoke both Inflammatory and Tolerogenic Immune Responses in Human Dendritic Cells Mediated by Retinoic Acid Receptor Alpha Ligation.
    Bene L et al; Front. Immunol (2017) April 18; https://doi.org/10.3389/fimmu.2017.00427
  43. Dysbiosis and the immune system.
    Levy M et al; Nat Rev Immunol (2017) Apr;17 (4):219-232. doi: 10.1038/nri.2017.7
  44. Gut Microbiota: Small Molecules Modulate Host Cellular Functions.
    Luber JM et al; Curr Biol (2017) Apr 24;27(8): R307-R310. doi: 10.1016/j.cub.2017.03.026
  45. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals.
    Bhat MI et al; Nutr Rev (2017) Apr 22; doi: 10.1093/nutrit/nux001
  46. Dysbiosis a risk factor for celiac disease
    Girbovan A et al; Med Microbiol Immunol (2017) Apr;206(2):83-91.
  47. The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System.
    Luo A et al. Front; Immunol (2017) April 10; https://doi.org/10.3389/fimmu.2017.00417
  48. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review
    Dhayia DK et al; Front. Microbiol (2017) April 04; https://doi.org/10.3389/fmicb.2017.00563
  49. Diet and microbiota in inflammatory bowel disease: The gut in disharmony
    Rapozo D et al; World J Gastroenterol (2017) March 28; 23(12): 2124-2140
  50. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility
    Ge X et al; Sci Rep (2017) Mar 27 ;7(1):441. doi: 10.1038/s41598-017-00612-y.
  51. Microbiome effects on immunity, health and disease in the lung.
    Shukla SD et al;Clinical & Translational Immunology (2017) March 10; 6, e133; doi:10.1038/cti.2017.6;
  52. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic reviewand meta-analysis.
    Pammi M et al; Microbiome (2017) Mar 9;5(1):31. doi: 10.1186/s40168-017-0248-8.
  53. Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota.
    Joyce SA et al; Dig Dis (2017) Mar 1;35(3):169-177.
  54. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice.
    De Palma G et al; Sci Transl Med (2017) Mar 1;9(379). pii: eaaf6397
  55. Rethinking Diet to Aid Human-Microbe Symbiosis.
    Derrien M et al; Trends Microbiol (2017) Feb;25(2):100-112. doi: 10.1016/j.tim.2016.09.011
  56. Host-microbial Cross-talk in Inflammatory Bowel Disease.
    Nagao-Kitamoto H et al; Immune Netw (2017) Feb;17(1):1-12. doi: 10.4110/in.2017.17.1.1
  57. Two dynamic regimes in the human gut microbiome.
    Gibbons SM et al; PLoS Comput Biol (2017) Feb 21;13(2):e1005364.
  58. Liver Transplant Modulates Gut Microbial Dysbiosis and Cognitive Function in Cirrhosis.
    Bajaj JS et al; Liver Transpl (2017) Feb 27; doi: 10.1002/lt.24754
  59. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy.
    Tang R et al; Gut (2017) Feb 17; pii: gutjnl-2016-313332
  60. How to modulate gut microbiota: diet, pre-probiotics or antibiotics?
    Ponziani FR et al; Minerva Gastroenterol Dietol (2017) Feb 17; doi: 10.23736/S1121-421X.17.02382-0.
  61. Dysbiosis a risk factor for celiac disease.
    Girbovan A et al; Med Microbiol Immunol (2017) Feb 15; doi: 10.1007/s00430-017-0496-z
  62. Erratum to: Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort.
    Hill CJ et al; Microbiome (2017) Feb 14;5(1):21. doi: 10.1186/s40168-017-0240-3.
  63. Timely use of Probiotics in Hospitalized Adults Prevents Clostridium difficile Infection: a Systematic Review with Meta-Regression Analysis.
    Shen NT et al; Gastroenterology (2017) Feb 9; pii: S0016-5085(17)30136-1
  64. Gut microbiota: Implications in Parkinson's disease.
    Parashar A et al; Parkinsonism Relat Disord (2017) Feb 7; pii: S1353-8020(17)30036-6.
  65. Gut Microbiota: A Potential Regulator of Neurodevelopment.
    Tognini P et al; Front Cell Neurosci (2017) Feb 7;11:25. doi: 10.3389/fncel.2017.00025. eCollection 2017.
  66. Role of lactic acid probiotic bacteria in IBD.
    Vemuri R et al; Curr Pharm Des. 2017 Feb 6; doi: 10.2174/1381612823666170207100025
  67. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment.
    Noble E et al; Front. Behav. Neurosci (2017) Jan 30; https://doi.org/10.3389/fnbeh.2017.00009
  68. Therapeutic Modulation of Gut Microbiota in Functional Bowel Disorders.
    Lee HJ et al; J Neurogastroenterol Motil (2017) Jan 30;23(1):9-19. doi: 10.5056/jnm16124.
  69. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration.
    Dinan TG et al; J Physiol (2017) Jan 15;595(2):489-503. doi: 10.1113/JP273106. Epub 2016 Dec 4
  70. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.
    Lin L et al; BMC Immunol. 2017 Jan 6;18(1):2. doi: 10.1186/s12865-016-0187-3.
  71. Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses.
    Chung SY et al; Biol Res Nurs (2017) Jan; 1:1099800417732412. doi: 10.1177/1099800417732412

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.
  1. The Gut Microbiota: The Gateway to Improved Metabolism.
    Martinez KB et al; Gastroenterol Clin North Am (2016) Dec;45(4):601-614.
  2. The gut-skin axis in health and disease: A paradigm with therapeutic implications.
    O'Neill CA et al; Bioessays. 2016 Nov;38(11):1167-1176. doi: 10.1002/bies.201600008. Epub 2016 Aug 24.
  3. Current status of the microbiome in renal transplantation.
    Ahmad S et al; Curr Opin Nephrol Hypertens. 2016 Nov;25(6):570-576.
  4. Gut Microbiota and Risk of Developing Celiac Disease.
    Cenit MC et al; J Clin Gastroenterol. 2016 Nov/Dec;50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S148-S152.
  5. A clinical update on the significance of the gut microbiota in systemic autoimmunity.
    Rosser EC et al; J Autoimmun. 2016 Nov;74:85-93. doi: 10.1016/j.jaut.2016.06.009. Epub 2016 Jul 29.
  6. Gut Microbiome and Gastrointestinal Cancer: Les liaisons Dangereuses.
    Tözün N et al; J Clin Gastroenterol. 2016 Nov/Dec;50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S191-S196.
  7. Helicobacter pylori Infection Aggravates Diet-induced Insulin Resistance in Association With Gut Microbiota of Mice.
    He C et al; EBioMedicine. 2016 Oct;12:247-254. doi: 10.1016/j.ebiom.2016.09.010. Epub 2016 Sep 13.
  8. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT).
    Pu S et al; Front Microbiol. 2016 Oct 10;7:1612. eCollection 2016.
  9. The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood.
    Slattery J et al; Clin Med Insights Pediatr. 2016 Oct 9;10:91-107. eCollection 2016
  10. Gut microbiota and central nervous system development.
    Principi N et al; J Infect. 2016 Oct 8. pii: S0163-4453(16)30251-1. doi: 10.1016/j.jinf.2016.09.010.
  11. The role of the gut microbiota in food allergy.
    Rachid R et al; Curr Opin Pediatr. 2016 Sep 28.
  12. Gastric microbiota in the functional dyspepsia patients treated with probiotic yogurt.
    Nakae H et al; BMJ Open Gastroenterol. 2016 Sep 16;3(1):e000109. eCollection 2016.
  13. Alzheimer's disease and gut microbiota.
    Hu X et al; Sci China Life Sci. 2016 Aug 26
  14. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders.
    Maqsood R et al;Neurochem Res. 2016 Aug 23. [Epub ahead of print]
  15. Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System.
    Liu L et al;. Sci Rep. 2016 Aug 23;6:31763. doi: 10.1038/srep31763.
  16. Association of Intestinal Microbiota with Metabolic Markers and Dietary Habits in Patients with Type 2 Diabetes.
    Yamaguchi Y et al; Digestion. 2016 Aug 10;94(2):66-72.
  17. Interactions of gut microbiota with dietary polyphenols and consequences to human health.
    Tomás-Barberán FA et al; Curr Opin Clin Nutr Metab Care. 2016 Aug 3. [Epub ahead of print]
  18. The role of short-chain fatty acid on blood pressure regulation.
    Miyamoto J et al; Curr Opin Nephrol Hypertens. 2016;25(5):379-83. doi: 10.1097/MNH.0000000000000246
  19. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.
    Saad MJ; Physiology (Bethesda). 2016 Jul;31(4):283-93. doi: 10.1152/physiol.00041.2015;
  20. The Gut Microbiome and Obesity
    John GK; Curr Oncol Rep. 2016 Jul;18(7):45. doi: 10.1007/s11912-016-0528-
  21. The Role of the Gut Microbiome on Chronic Kidney Disease.
    Sampaio-Maia B et al; Adv Appl Microbiol. 2016;96:65-94. doi: 10.1016/bs.aambs.2016.06.002. Epub 2016 Jul 18
  22. Novel perspectives on therapeutic modulation of the gut microbiota.
    McCarville JL et al; Therap Adv Gastroenterol. 2016 Jul;9(4):580-93. doi: 10.1177/1 756283X16637819. Epub 2016 Apr 4.
  23. The microbiome and innate immunity.
    Thaiss CA et al; Nature. 2016 Jul 6;535(7610):65-74. doi: 10.1038/nature18847.
  24. The microbiota in adaptive immune homeostasis and disease.
    Honda K et al; 3Nature. 2016 Jul 6;535(7610):75-84. doi: 10.1038/nature18848
  25. Diet-microbiota interactions as moderators of human metabolism.
    Sonnenburg JL et al; Nature. 2016 Jul 6;535(7610):56-64. doi:10.1038/nature18846
  26. Interactions between the microbiota and pathogenic bacteria in the gut.
    Bäumler AJ et al;  Nature. 2016 Jul 6;535(7610):85-93. doi:0.1038/nature18849
  27. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota.
    Oleskin AV e al; Microb Ecol Health Dis. 2016 Jul 5; 27:30971. doi: 10.3402/mehd. v27.30971. eCollection 2016.
  28. Kynurenine pathway metabolism and the microbiota-gut-brain axis.
    Kennedy PJ et al; Neuropharmacology. 2016 Jul 5. pii: S0028-3908(16)30288-X. doi: 10.1016/j.neuropharm. 2016.07.002. 
  29. Fecal Microbiota Transplantation in Combination with Soluble Dietary Fiber for Treatment of Slow Transit Constipation: A Pilot Study.
    Ge X et al; Arch Med Res. 2016 Jul 4. pii: S0188-4409(16)30053-4. doi: 10.1016/j.arcmed.2016.06.005. 
  30. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice.
    Okai S et al; t Microbiol. 2016 Jul 4;1(9):16103. doi: 10.1038/nmicrobiol.2016.103.
  31. How the microbiota shapes rheumatic diseases.
    Van de Wiele T et al; Nat Rev Rheumatol. 12016 Jun 16. doi: 10.1038/nrrheum.2016.85
  32. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease.
    O'Dwyer DN; J Immunol. 2016 Jun 15;196(12):4839-47. doi: 10.4049/jimmunol.1600279
  33. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis.
    Zhuang X et al; J Gastroenterol Hepatol. 2016 Jun 14. doi: 10.1111/jgh.13471
  34. Fecal Microbiota Transplantation for Ulcerative Colitis: A Systematic Review and Meta-Analysis.
    Shi Y et al; PLoS One. 2016 Jun 13;11(6):e0157259. doi: 10.1371/journal.pone.0157259. eCollection 2016
  35. The Role of Gut Microflora and the Cholinergic Anti-inflammatory Neuroendocrine System in Diabetes Mellitus.
    Parekh PJ et al; Front Endocrinol (Lausanne). 2016 Jun 8;7:55. doi: 10.3389/fendo.   2016.00055. eCollection 2016
  36. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions.
    Abdollahi-Roodsaz S et al; Nat Rev Rheumatol. 2016 Jun 3. doi: 10.1038/nrrheum.2016.68 
  37. Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior.
    Diaz Heijtz R1. Semin Fetal Neonatal Med. 2016 May 30. pii: S1744-165X(16)30012-9. doi: 10.1016/j.siny.2016.04.012 
  38. Nonalcoholic Fatty Liver Disease and the Gut Microbiome.
    Boursier J et al; Clin Liver Dis. 2016 May;20(2):263-75. doi: 10.1016/j.cld.2015.10.012. Epub 2015 Dec 24
  39. Impact of gut microbiota on diabetes mellitus.
    Blandino G et al 2016 May 11. pii: S1262-3636(16)30396-2. doi: 10.1016/j.diabet.2016.04.004
  40. The human gut microbiota and its interactive connections to diet.
    Milani C et al; J Hum Nutr Diet. 2016 May 10. doi: 10.1111/jhn.12371.   
  41. Gut microbiota: an Indicator to Gastrointestinal Tract Diseases.
    Patel T et al; J Gastrointest Cancer. 2016 Apr 29. [Epub ahead of print] 
  42. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.
    McVey Neufeld KA et al ; Can J Psychiatry. 2016 Apr;61(4):214-21. doi: 10.1177/0706743716635536. Epub 2016 Feb 24
  43. Development of the Neonatal Intestinal Microbiome and Its Association With Necrotizing Enterocolitis.
    Elgin et al (2016) Feb 3. pii: S0149-2918(16)00018-7. doi:10.1016/j.clinthera.2016.01.005. [Epub ahead of print]
  44. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD.
    Lee et al (2016) Gut 0:1-9. doi:10.1136/gutjnl-2015-309940.
  45. Microbiota, immunity and the liver.
    Vaikunthanathan et al (2016) Immunol Lett 171:36-49.
  46. Host-microbiota interactions in the pathogenesis of Antibiotic-Associated Diseases.
    Lichtman et al (2016) Cell Reports 14:1049-1061.
  47. The Co-Metabolomics within the Gut-Brain metabolic interaction: Potential targets for drug treatment and design.
    Obrenovich et al (2016) CNS Neurol Disord Drug Targets Feb 2 [Epub ahead of print].
  48. Gut microbiota and allergic disease in children.
    Bridgman et al (2016) Ann Allergy Asthma Immunol 116:99-105.
  49. The gut microbiota and host health: a new clinical frontier.
    Marchesi et al (2016) Gut 65:330-339.
  50. Marchesi et al (2016) Gut 65:330-339.
    Cani and Everard (2016) Mol Nutr Food Res 60:58-66.
  51. Gut Microbiota and Metabolic Endotoxemia in young obese Mexican subjects.
    Radilla-Vazquez et al (2016) Obes Facts 9:1-11.
  52. Resistant starch alters the Microbiota-Gut Brain Axis: Implications for dietary modulation of behavior.
    Lyte et al (2016) PLoS One 11(1):e0146406. doi: 10.1371/journal.pone.0146406.
  53. The impact of dietary energy intake early in life on the colonic microbiota of adult mice.
    Xu et al (2016) Sci Rep ;6:19083. doi: 10.1038/srep19083.
  54. Early gut colonization of preterm infants: Effect of enteral feeding tubes.
    Gomez et al (2016) J Pediatr Gastroenterol Nutr Jan 2 [Epub ahead of print].
  55. Microbiota-induced obesity requires farnesoid X receptor.
    Parseus et al (2016) Gut Jan 6. pii: gutjnl-2015-310283. doi: 10.1136/gutjnl-2015-310283. [Epub ahead of print]
  56. Obesity, Cancer and Nutrition, Gut Microbiota – Special Issues 2016.
    Humpf et al (2016) Mol Nutr Food Res 60(1):5-6.
  57. The role of the intestinal microbiota in type 1 diabetes mellitus.
    Knip and Siljander (2016) Naat Rev Endocrinol Jan 4. doi: 10.1038/nrendo.2015.218. [Epub ahead of print]
  58. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses.
    Rossi et al (2016) Sci Rep Jan 4;6:18507. doi: 10.1038/srep18507.
  59. Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome.
    Halmos and Suba (2016) Orv Hetil 157 (1):13-22.
  60. Infant gut immunity: a preliminary study of IgA associations with breastfeeding.
    Bridgman et al (2016) J Dev Orig Health Dis 7(1):68-72.
  61. Irritable Bowel Syndrome may be associated with elevated alanine aminotransferase and Metabolic Syndrome.
    Lee et al (2016) Yonsei Med J 57(1):146-152.
  62. Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections.
    Curr Opin Gastroenterol (2016) 32(1):7-11.
  63. Immunopathogenesis of IBD: current state of the art.
    de Souza and Fiocchi (2016) Nat Rev Gastroenterol Hepatol 13(1):13-27.
  64. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota.
    Mishra et al (2016) Metabolism 65(1):48-65.
  65. Microbiome to Brain: Unravelling the multidirectional axes of communication.
    El Aidy et al (2016) Adv Exp Med Biol 874:301-36.
  66. The influence of gut microbiota on drug metabolism and toxicity.
    Li et al (2016) Expert Opin Drug Metab Toxicol 12(1):31-40.
  67. Gut microbiota and obesity.
    Gerard (2016) Cell Mol Life Sci 73(1):147-62.

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.
  1. Microbiota and gastrointestinal diseases.
    Polanco Allue I (2015) An Pediatr (Barc). 2015 Oct 31. pii: S1695-4033(15)00359-8.
  2. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders.
    Kelly et al (2015) Front Cell Neurosci 9:392.
  3. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches.
    Belizario JE and Napolitano M (2015) Front Microbiol 6:1050.
  4. Bugs and Guts: Practical Applications of Probiotics for Gastrointestinal Disorders in Children.
    Barnes D and Yeh AM (2015) Nutr Clin Pract 30(6):747-59.
  5. Changes seen in gut bacteria content and distribution with obesity: causation or association.
    Bell DS (2015) Postgrad Med 127(8):863-8.
  6. Role of the gut microbiome in non-alcoholic fatty liver disease.
    Agel et al (2015) Nutr Clin Pract 30(6):780-6.
  7. Metagenomic cross-talk the regulatory interplay between immunogenomics and the microbiome.
    Levy M et al (2015) Genome Med 7(1):120. doi: 10.1186/s13073-015-0249-9.
  8. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans.
    Pudlo NA et al (2015) MBio 6(6). pii: e01282-15.
  9. Gut microbiota dysbiosis as risk and premorbid factors of IBD and IBS along the childhood-adulthood transition.
    Putignani L et al (2015) Inflamm Bowel Dis Oct 21 [Epub ahead of print].
  10. Gut microbiota and host metabolism in liver cirrhosis.
    Usami M et al (2015) World J Gastroenterol 21(41):11597-11608.
  11. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism.
    Mikkelsen KH et al (2015) PLoS One 10(11): e0142352.
  12. Seasonal shifts in diet and gut microbiota of the American Bison.
    Bergmann GT et al (2015) 10(11):e 0142409.
  13. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut.
    Michielan A and DÍnca R (2015) Mediators Inflamm 2015:628157.
  14. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes.
    Palau-Rodriguez M et al (2015) Front Microbiol 6:1151.
  15. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis.
    Yano JM et al (2015) Cell 161(2):264-76.
  16. Functional dynamics of the Gut Microbiome in elderly people during probiotic consumption.
    Eloe-Fadrosh EA et al (2015) mBio 6(2):e00231-15.
  17. Individualized medicine and the microbiome in reproductive tract.
    Braundmeier AG et al (2015) Front Physiol 6:97. doi: 10.3389/fphys.2015.00097.
  18. Gut Microbiota: Firmicutes and Bacteroidetes involved in insulin resistance by mediating levels of glucagon-likepeptide 1.
    Greenhill C (2015) Nat Rev Endocrinol 11(5):254. doi: 10.1038/nrendo.2015.40.
  19. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1in diet-induced obesity.
    Hwang I et al (2015) FASEB J pii: fj.14-265983.
  20. Fate, activity, and impact of ingested bacteria within the human gut microbiota.
    Derrien M and van Hylckama Vlieg JE (2015) Trends Microbiol pii: S0966-842X(15)00056-6. doi: 10.1016/j.tim.2015.03.002.
  21. The microbes within.
    Grogan D (2015) Nature 518(7540):S2. doi: 10.1038/518S2a.
  22. Why microbiome treatments could pay off soon.
    Knight R (2015) Nature 518(7540):S5. doi: 10.1038/518S5a.
  23. Your microbes at work: fiber fermenters keep us healthy.
    Nature 2015, 518(7540):S9. doi: 10.1038/518S9a.
  24. Mental health: thinking from the gut.
    Schmidt C (2015) Nature 518(7540):S12-5. doi: 10.1038/518S13a.
  25. Gut microbiome: the peacekeepers
    Velasquez-Manoff (2015) Nature 518(7540):S3-11. doi: 10.1038/518S3a.
  26. Microbiome engineering.
    Sonnenburg JL (2015) Nature 518(7540):S10. doi: 10.1038/518S10a.
  27. The gene-microbe link.
    Ley RE (2015) Nature 518(7540):S7. doi: 10.1038/518S7a.  
  28. The diverse microbiome of the hunter-gatherer.
    Schnorr SL (2015) Nature 518(7540):S14-5. doi: 10.1038/518S14a.
  29. Microbes central to human reproduction.
    Reid G et al (2015) Am J Reprod Immunol 73:1-11.
  30. Application of metagenomics in the human gut microbiome.
    Wang WL et al (2015) World J Gastroenterol 21(3):803-814.
  31. Fecal microbiota transplantation broadening its application beyond intestinal disorders.
    Xu MQ et al (2015) World J Gastroenterol 21(1):102-111.
  32. The gut microbiota and inflammatory noncommunicable diseases: Associations and potentials for gut microbiota therapies.
    West CE et al (2015) J Allergy Clin Immunol 135(1): 3-13.
  33. How informative is the mouse for human gut microbiota research?
    Nguyen TLA et al (2015) Dis Model Mech 8(1):1-16.
  34. Implication of Gut Microbiota in Nonalcoholic Fatty Liver Disease.
    Boursier J and Diehl AM (2015) PLoS Pathogens 11(1):e1004559.
  35. Gut microbiota composition correlates with changes in body fat content due to weight loss.
    Remely M et al (2015) Beneficial Microbes 21:1-9.
  36. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health.
    Conlon MA and Bird AR (2015) Nutrients 7:17-44.
  37. Engineered commensal bacteria reprogram intestinal cells into glucose – responsive insulin-secreting cells for the treatment of Diabetes.
    Duan FF et al (2015) Diabetes Jan 27. pii: db140635.
  38. Childhood Obesity: A Role for Gut Microbiota?
    Sanchez M et al (2015) Int J Environ Res Public Health 12:162-175.
  39. Inclusion of fermented foods in food guides around the world.
    Chilton SN et al (2015) Nutrients 7:390-404.
  40. Clinical condition

    Observed differences in microbiota compared to a “healthy state”

    References

    Bacterial Vaginosis (BV)

    Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

    Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

    Inflammatory Bowel Disease (IBD; colitis)

    Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

    Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

    Type 1 diabetes (T1D)

    Bacterial diversity decreased over time in children; functionally aberrant gene content.

    Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

    Type 2 diabetes

    Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

    Larsen N et al, 2010 PLoS One 5(2):e9085.

    Rheumatoid Arthritis

    Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

    Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

    Colorectal Cancer

    Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

    Castellarin M et al, 2012 Genome Res 22:299-306

    Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.
  1. Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective.
    Han JL and Lin HL (2014) World J Gastroenterol 20(47):17737-17745.
  2. You are what you host: Microbiome modulation of the aging process.
    Heintz C and Mair W (2014) Cell 156(3):408-11.
  3. Role and influence of gut microbiota in pathogenesis and management of obesity and metabolic syndrome.
    Parekh PJ et al (2014) Front Endocrinol (Lausanne) 5(47):1-7.
  4. More than 300 million preschool children suffer from malnutrition – Can the Gut Microbiota of these children be different?
    Ghosh TS et al (2014) PLoS ONE 9(4):e95547.
  5. Does Malnutrition exist in another developing country - Bangladesh?
    Subramanian S et al (2014) Nature 510(7505):417-421.
  6. Does a foraging subsistence strategy influence the gut microbiota profile of Hadza hunters?
    Schnorr SL et al (2014) Nature Communications 5:3654.
  7. Microbial genes, brain and behavior – epigenetic regulations of the gut-brain axis.
    Stilling RM et al (2014) Genes, Brain and Behavior 13:69-86.
  8. Brain Gut Microbiome Interactions and Functional Bowel Disorders.
    Mayer EA et al (2014) Gastroenterology 146(6): 1500-1512.
  9. Microbiota-host interactions in irritable bowel syndrome: Epithelial barrier immune regulation and brain-gut interactions.
    Hyland NP et al (2014) World J Gastroenterol 20(27):8859-8866.
  10. Irritable bowel syndrome: A microbiome-gut brain axis disorder.
    Kennedy PJ et al (2014) World J Gastroenterol 20(39): 14105-14125.
  11. Diet rapidly and reproducibly alters the human gut microbiome.
    David LA et al (2014) Nature 505(7484):559-563.
  12. Fecal Microbiota Imbalance in Mexican children with Type 1 Diabetes.
    Mejia-Leon ME et al (2014) Science Reports 4:3814.
  13. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.
    Chen Z et al (2014) J Clin Invest 124(8):3391-406.
  14. Gut Dysbiosis and Detection of "Live Gut Bacteria" in Blood of Japanese Patients With Type 2 Diabetes.
    Sato J et al (2014) Diabetes Care doi:10.2337/dc13-2817.

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.
  1. Are specific strains of Bifidobacteria vertically transmitted from mother to child?
    Makino H et al (2013) PLoS ONE 8(11):e78331.
  2. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.
    Smith MI et al (2013) Science 339(6119):548-554.

Examples of putative associations between Microbiota and “Disease states”

Clinical condition

Observed differences in microbiota compared to a “healthy state”

References

Bacterial Vaginosis (BV)

Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel’s clinical criteria).

Fredricks DN et al, 2005 N Engl J Med 353:1899-911; Srinivasan S et al, 2012 PLoS ONE 7(6): e37818.

Inflammatory Bowel Disease (IBD; colitis)

Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and / or gene content distinguish IBD individuals.

Frank DN et al 2007 Proc Natl Acad Sci USA 104:13780-85; Garrett WS et al, 2010 Cell Host Microbe 8:292-300; Qin J et al, 2010 Nature 464:59-65.

Type 1 diabetes (T1D)

Bacterial diversity decreased over time in children; functionally aberrant gene content.

Giongo A et al, 2011 ISME J 5:82-89; Brown CT et al, 2011 PLoS ONE 6(10):e25792.

Type 2 diabetes

Relative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group.

Larsen N et al, 2010 PLoS One 5(2):e9085.

Rheumatoid Arthritis

Segmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells resulting in inflammation.

Reviewed in Scher JU and Abramson SB 2011 Nat Rev Rheumatol 7(10):569-78.

Colorectal Cancer

Increased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition.

Castellarin M et al, 2012 Genome Res 22:299-306

Adapted from: Eloe-Fadrosh EA and Rasko DA (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annu Rev Med 64:145-63.