14th India Probiotic Symposium: ABS- 011 Investigating the Infant Gut Microbiome Associated with Child Growth Failure in Early life

Ankita Maddheshiya¹, Sunita Taneja², Nita Bhandari², Partha Pratim Majumder^{1,} Ranadip Chowdhury², and Souvik Mukherjee^{1*}

Presenting Author: Ankita Maddheshiya; *Correspondence to: Dr. Souvik Mukherjee, Associate Professor, NIBMG, Kalyani, West Bengal

¹Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West Bengal, India

²Society for Applied Studies, Kalu Sarai, New Delhi, India

E-mail-Ankita Maddheshiya: <u>am5@nibmg.ac.in</u>; Dr. Souvik Mukherjee: <u>sm2@nibmg.ac.in</u>

INTRODUCTION	METHODOLOGY	RESULTS
WHAT IS THE MICROBIONE? Community of microbes 1:1 Human microbiome: Collective genome of all the microbes or community of microbes in the human body Gut microbiome The composition of the intestinal microbiome: It affects health from the prenatal period throughout childhood, and many diseases have been associated with dysbiosis Child Growth failure (CGF)	Data Analysis using QIIME2: ASV based clustering (100% sequence similarity)	 Linear Discriminant Analysis Shows: <i>Bifidobacterium longum</i> is the most discriminant taxa in Normal group <i>Escherichia-Shigella fergusonii</i> and <i>Enterococcus durans</i> are the most discriminant taxa in CGF group at 6 months of age CGF Normal Bifidobacterium_longum
Expressed as stunting, wasting, or underweight in children <5	by aligning reads to SILVA database	Enterococcus_gallinarum Lachnoclostridium; s_

Longitudinal Analysis

Linear Mixed Effect (LME) has been performed using q2-longitudinal plugin in QIIME2 to check the effect of age (3 and 6 Months) and child status (CGF/Normal) on the relative abundance of genera and their species level data

1. Bifidobacterium longum is increasing with age in Normal group of infants and **decreasing in CGF** group

Escherichia-Shigella fergusonii is significantly **increased with age** in CGF group of infants

Child Stunting, and Child Mortality

HYPOTHESIS AND OBJECTIVE

HYPOTHESIS

RESEARCH OBJECTIVE

To investigate the alterations in gut microbiome composition and diversity associated with early CGF in first six months of life

[PERMANOVA] F-value: 4.0222; R-squared: 0.025293; p-value: 0.022 [PERMANOVA] F-value: 2.3112; R-squared: 0.014692; p-value: 0.062 Principal coordinate analysis (PCoA) plots generated using Bray-Curtis dissimilarity index shows higher inter-individual variability across CGF group of infants as compared to Normal group whose microbiome composition is mostly similar across individuals at both a) genus and b) species levels at 6 months of age

Significantly different taxa in Normal and CGF group of infants

DISCUSSION AND CONCLUSION

Bifidobacterium

Core health-promoting organisms due to the ability to utilize human milk oligosaccharides

A reduction in the abundance of *Bifidobacterium sp.* in infants has been shown to increase the prevalence of obesity, diabetes, metabolic disorder, and all-cause mortality later in life (6)

Escherichia-shigella

A major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries

The gut microbiota dominated by the Escherichia/Shigella sp. correlates with low SCFA concentrations and an increase in metabolic pathways related to diarrheal pathogens in pediatric populations of South Asia (7)

Enterococcus

Facultative pathogens that can cause a variety of infections

 \checkmark The differences in microbial communities may have important health consequences as Bifidobacterium is one of healthy commensal, important for human milk oligosaccharides metabolization in infants

✓ *Escherichia-Shigella* and *Enterococcus* have pathogenic potentiality, that can cause gut dysbiosis which eventually leads to CGF

 \checkmark These differences in microbial communities can act as predictive biomarkers of early infancy CGF that can be modulated by prebiotic/probiotic approaches in future

KEY MASSAGES

> Significant differences in gut microbiome composition and diversity are visible

At 6 Months of age

- Abundance of *Bifidobacterium longum* has been significantly increased in Normal group
- Abundance of *Escherichia-shigella fergusonii*, and *Enterococcus durans* has been significantly increased in CGF group

at 6 months of age

> *Bifidobacterium sp.* are important for proper growth of infants

Future Scope

Limitations of 16S rRNA gene sequencing:

- Species and Strain level Taxonomic Classification
- Detection of Microbial Gene Families and Pathways

Identification of Metabolically Active Pathways with Differential Gene Expression

REFERENCES

1. Maternal & Child Nutrition, 15(4), e12866.

- *2. Early human development.* 2011;87(10):647-52.
- 3. The Lancet. Global Health, 4(9), e654–e662.
- 4. Paediatrics and International Child Health, 34(4), 250–265.
- 5. BMJ 2022;379:e072046
- 6. Microorganisms. 2022 Jan 25;10(2):278
- 7. Lancet. 2013 Jul 20;382(9888):209-22.

ACKNOWLEDGEMENTS

- Prof. Sagar Sengupta, Director, NIBMG, Kalyani
- 2) Members of WINGS cohort and CHRD-SAS
- National Genomics Core of NIBMG for Sequencing
- 4) CSIR for fellowship
 - 5) All the faculty members and students of NIBMG

Human Microbiome Research Team @ NIBMG

\mathbb{X} @smlab_NIBMG

NATIONAL INSTITUTE OF BIOMEDICAL GENOMICS Accelerating Genomics for Health