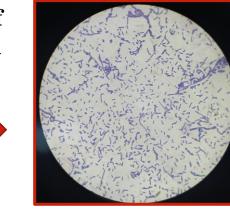


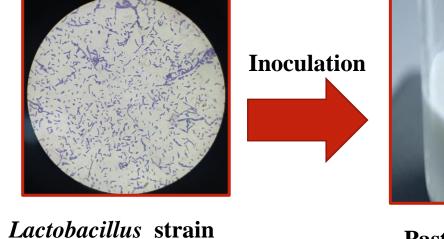
Development of anti-diabetic fermented camel milk with indigenous probiotic Lactobacillus cultures (containing α-glucosidase and DPP-IV inhibitory properties)

Mohammad Rizwan, Nishchal Thakur, and Shilpa Vij* Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India *Email: shilpavijn@gmail.com

Introduction

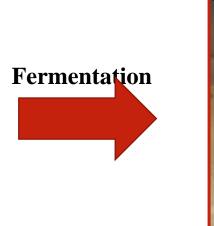
The most prevalent chronic condition, diabetes mellitus, is characterized by high blood sugar levels due to deficiencies in insulin secretion (known as Type 1 Diabetes Mellitus-T1DM) or insulin activity (known as Type 2 DM). T1DM accounts for 10% of all diabetic cases, as the body cannot generate insulin. T2DM, which affects up to 90% of diabetic cases, occurs when the body produces insulin but does not use it effectively. According to WHO (2018), camel milk has demonstrated anti-diabetic properties that can be further enhanced by utilizing specific lactobacilli. Lactobacilli extracted from camel milk that exhibit α-glucosidase and DPP-IV inhibitory activities are the most appropriate for producing anti-diabetic fermented camel milk.



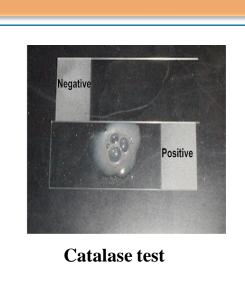

Raw Camel Milk

भाकुअनुप

ICAR


Lactic acid

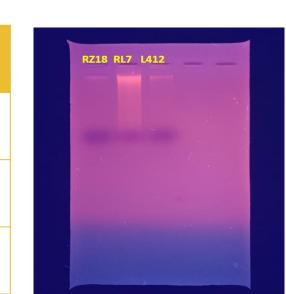
Pasteurised Camel


Fermented Camel milk

Research objective: To study anti-diabetic potential of fermented camel milk with indigenous probiotic Lactobacillus cultures.

Methods

Camel milk collection					
Source	Camel Species				
NRCC, Bikaner	Bikaneri				
NRCC, Bikaner	Jaisalmer				
NRCC, Bikaner	Kachchi				
NRCC, Bikaner	Mewari				
Kalayat, Haryana	Desi Breed				

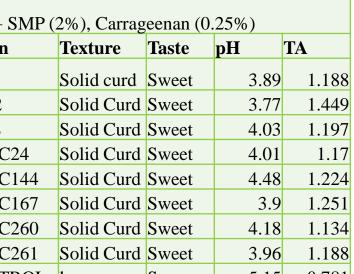

Screening of Lactobacillus strain from Camel milk

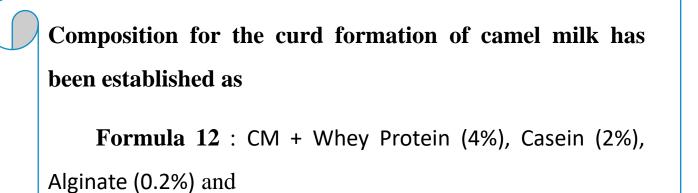
zone around the colonies **Total 188 isolates were** isolated and screened

Proteolysis

Identified by 16s rRNA sequencing by Sanger's Methods

S. No	Name	Site	Identified name	Match on NCBI
1.	RL4	Camel Milk	Lacticaseibacillus rhamnosus	100%
2.	RZ18	Camel Milk	Lactiplantibacillus argentoratensis	100%
3.	LG12	Camel Milk	Lacticaseibacillus rhamnosus	98%


Fermentation of camel milk


strains @2% Incubated at 37°C for 12 hour **Fermented milk**

Analysis

Selection of Formulation for the suitable product

CM + Whey		1%), Casein	(2%),	CM + SMP ((2%), Carrag	geenan (0	.25%)	
Alginate (0.2 Strain	Texture	Taste	pН	Strain	Texture	Taste	<u> </u>	TA
RL4	Curd	Sweet	4.12	RL4	Solid curd	Sweet	3.89	1.188
LG12	Curd	Sweet	3.85	LG12	Solid Curd	Sweet	3.77	1.449
RZ18	Curd	Sweet	4.91	RZ18	Solid Curd	Sweet	4.03	1.197
NCDC24	Curd	Sweet	4.36	NCDC24	Solid Curd	Sweet	4.01	1.17
NCDC144	Curd	Sweet	4.06	NCDC144	Solid Curd	Sweet	4.48	1.224
NCDC167	Curd	Sweet	4.19	NCDC167	Solid Curd	Sweet	3.9	1.251
NCDC260	Curd	Sweet	4.09	NCDC260	Solid Curd	Sweet	4.18	1.134
NCDC261	Curd	Sweet	4.01	NCDC261	Solid Curd	Sweet	3.96	1.188
CONTROL	loose	Sour	5.9	CONTROL	loose	Sour	5.15	0.781

Formula 14: Camel milk + SMP (2%) + Carrageenan (0.25%)

NCDC144

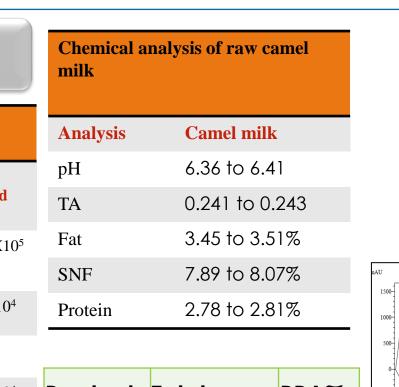
NCDC167

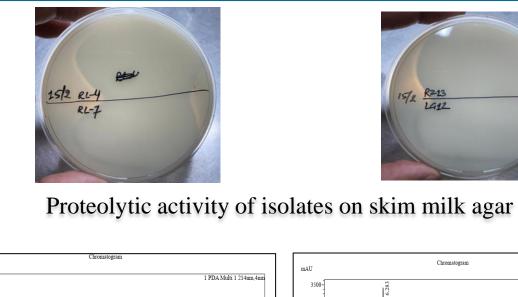
NCDC260

Animal Study

Formula 14

Gavage feeding



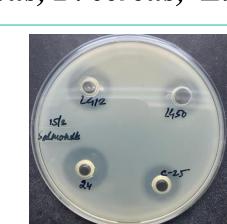

Feeding raw camel milk

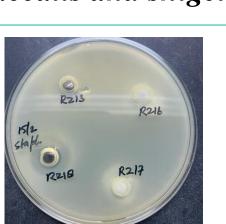
Animal Dissection

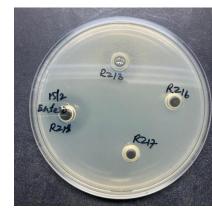
Results Microbiological analysis of raw camel milk Media Bikaneri Jaisalmeri Kachchi Mewari Desi

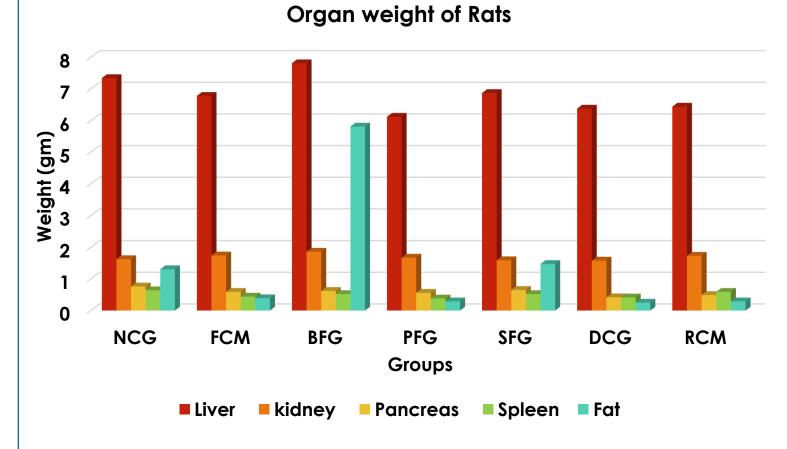

Product Total area RPA% 219697750 69.65 135131326 175.82 199341450 86.97 NCDC24 90513955 311.78 372724613

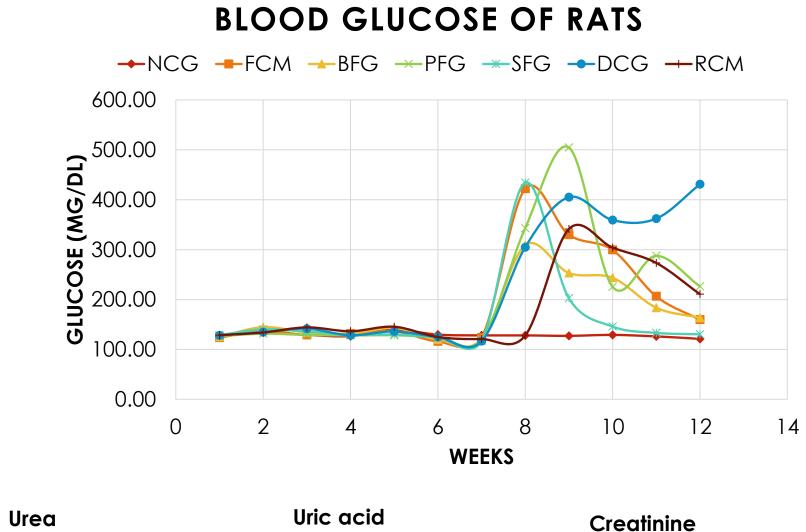
Raw Camel Milk Fermented Camel Milk with RL4 Relative Proteolytic activity of Fermented camel milk by HPLC

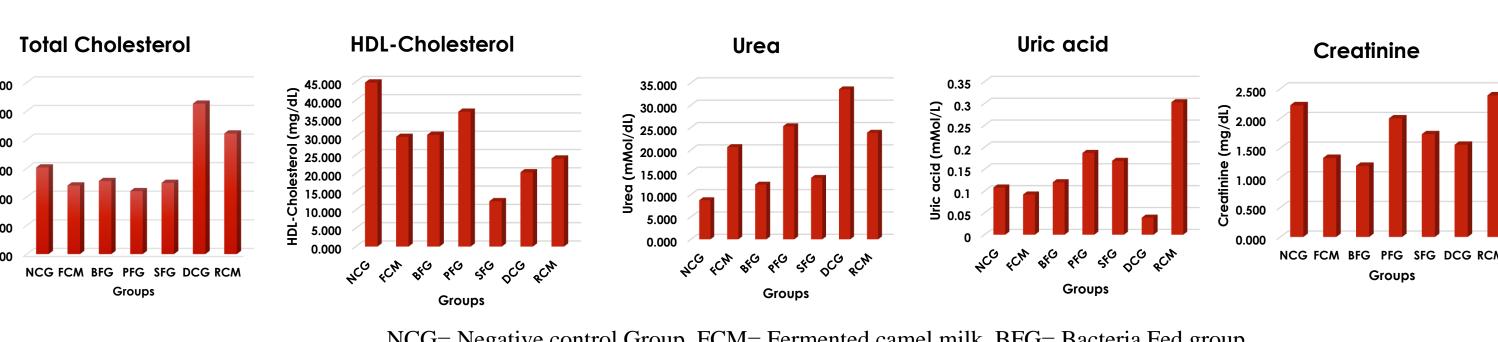

Antimicrobial activity of fermented camel milk


RZ18,20,21,22,23,26,RL4,7,9,12,16, NCDC17,24,195, DC,FM, LG12 give good antimicrobial activity against E. coli, S. typhi, S. aureus, B. cereus, E. faecalis and shigella.

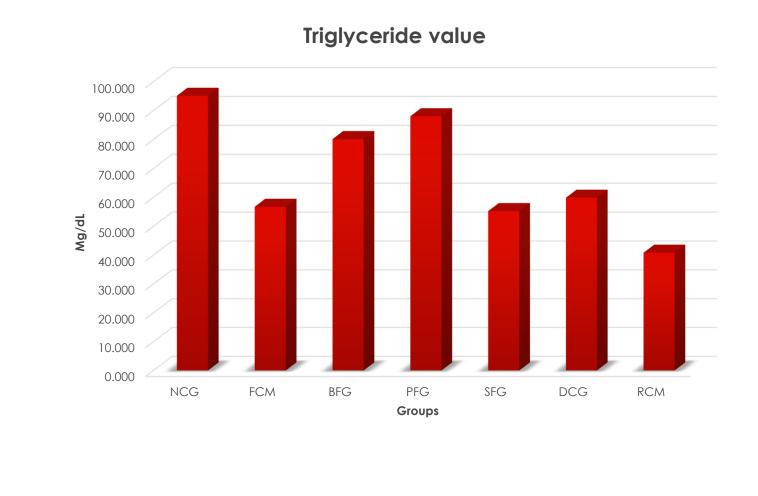








Alpha- glucosidase inhibitory activity of selected strains **DPP-IV** inhibitory activity of selected strains **CFS CFS** (GIR (GIR (GIR (GIR Isolates 25.00 20.00 Isolates %) 15.00 29.56 25.20 22.93 28.80 27.01 27.95 27.61 27.60 28.80 29.71 NCDC24 27.86 25.05 29.92 25.76 25.68 43.03 (Method: *Lacroix* and *Li-chan* 2013)



NCG= Negative control Group, FCM= Fermented camel milk, BFG= Bacteria Fed group, PFG= Peptide Fed group, SFG= Sitagliptin Fed group, DCG= Diabetic control group, RCM= Raw camel milk

Bioactivities of ultrafiltered fractions of fermented milk

		Bioactivity in IC50 (mg/mL)					
Fractions	Peptide Content	DPP-IV	α-glucosidase inhibition **	Anti-oxidant activity (EC50 mg/mL)***			
		inhibition *		ABTS	DPPH		
>10kDa	1.11±0.056	1.19±0.060	2.21±0.111	1.01±0.051	0.75±0.038		
10kDa	0.423±0.021	0.46±0.023	0.78±0.039	0.45±0.023	0.54±0.027		
5kDa	1.021±0.51	0.35±0.018	0.62±0.031	0.35±0.018	0.31±0.016		
3kDa	0.466±0.023	0.31±0.016	0.51±0.026	0.21±0.011	0.25±0.013		
Diprotein –		0.0032±0.000					
A *	-	2	-	-	-		
Acarbose**	-	-	0.0012±0.0001	-	-		
					0.0024 ± 0.00		
Trolox***	-	-	-	0.0015±0.0001	1		
 *For DPP 	-IV inhibition						
• ** α-glucosidase inhibition							
• *** Anti-oxidant activity							

Conclusion

188 lactic acid bacteria were isolated from camel milk, with 52 being proteolytic. 23 strains were chosen for their smooth curdling, lack of whey, sweet flavor, pH range (3.50-3.75) & titrable acidity range (0.711-1.224). Out of these, 16 showed DPP-IV inhibitory activity & 12 displayed α-glucosidase activity & probiotic properties. RL4, RZ18, & LG12 were selected as Lacticaseibacillus rhamnosus, Lactiplantibacillus argentoratensis, & Lacticaseibacillus rhamnosus via 16s rRNA.

There is significant decrease in Blood glucose level in rat after giving the formulas such as NCG (Normal Control Group), RCM (Raw camel milk), FCM (Fermented camel milk), BFG (Bacteria Fed group), SFG (Sitagliptin fed group) and DCG (Direct control group), 121±6.05, 210.67±10.53, 159.67±7.98, 163.33±8.17, 130.33±6.52, and 431±21.55mg/dL respectively.

Other factors reported to be significant in rat serum were α -glucosidase and DPP-IV inhibitory activity, cholesterol, urea, creatinine, GLP-1, GIP, rat insulin, HDL, LDL, and VLDL, as well as triglycerides, SGOT, and SGPT.

Significance

Indigenous Lacticaseibacillus isolates from camel milk found to have DPP-IV & α-glucosidase inhibitory activity. Fermented camel milk with lactic acid bacteria shown effective in treating diabetes.

Investigation found proteolytic Lactobacilli with α-glucosidase & DPP-IV inhibitory activity in exotic sources like camel milk. Anti-diabetic potential of camel milk improved by using these isolates in fermented camel milk preparation